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Bayesian Meta-Analysis
“…this book is extremely timely…not just a technical exposition, but provides practical guidance 
about using different software platforms, as well as valuable advice about extracting summary 
statistics, eliciting prior information, communicating results, visualisation, and many other is-
sues…reflects years of thoughtful experience, and should be of huge value to anyone faced with 
pooling studies into a coherent whole.”

~From the Foreword by Professor Sir David Spiegelhalter

Meta-analysis is the statistical combination of previously conducted studies, often from sum-
mary statistics but sometimes with individual participant data. It is widespread in life sciences 
and is gaining popularity in economics and beyond. In many real-life meta-analyses, challenges 
in the source information, such as unreported statistics or biases, can be incorporated using 
Bayesian methods. Bayesian Meta-Analysis: A Practical Introduction provides an approachable 
introduction for researchers who are new to Bayes, meta-analysis, or both. There is an emphasis 
on hands-on learning using a variety of software packages. 

Key Features
•  Introductory chapters assume no prior experience or mathematical training and are aimed at 

non-statistical researchers.
•  Examples of basic meta-analyses in seven different software alternatives: BUGS, JAGS, Stan, 

bayesmeta, brms, Stata, and JASP.
•  Practical advice on extracting information from studies, eliciting expert opinions, managing 

project decisions, and writing up findings.
•  Discussion of specific problems, including publication bias, unreported statistics, and a mix-

ture of study designs, with code examples.
•  Accompanying online blog and forum, with all code and data from the book, plus more trans-

lations to different software.

This book aims to bridge the gap between the researcher who wants to carry out tailored meta-
analysis and the techniques they need, which have previously been available only in mathemat-
ically or computationally demanding publications.
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Foreword

Scientific studies should never be seen in isolation—they add to existing knowledge, enabling
us to learn and progress. This is the essence of Bayesian thinking; on receipt of new evidence,
basic probability theory is used to update our beliefs in a coherent way. Meta-analysis—
where the evidence from multiple studies is combined—is, therefore, a natural area for
Bayesian methods, and so this book is extremely timely.

But of course things are rarely simple. Numerous complexities arise in trying to have a
consistent approach to combining multiple sources of evidence with our previous understand-
ing. Studies can vary for unknown reasons, use di�erent designs, have missing information,
or be subject to publication bias. Fortunately, a Bayesian approach allows extraordinary
flexibility to non-standard features, which can otherwise be very di�cult to handle.

The authors of this book have faced up to this complexity with relish, and systemati-
cally worked through a wide range of challenges encountered by those wanting to combine
evidence in the real world. And this is not just a technical exposition, but provides practical
guidance about using di�erent software platforms as well as valuable advice about extract-
ing summary statistics, eliciting prior information and communicating results, visualisation,
and many other issues they and others have had to deal with. There is a wealth of useful
guidance, whether adopting a Bayesian approach or not.

Although Bayesian methods are a natural fit for meta-analysis, their adoption has been
surprisingly slow. Many of the challenges this book addresses were highlighted in seminal
works from the 1990s and discussed extensively in the 2000s. However, currently only a small
fraction of meta-analyses employ Bayesian approaches to address these issues. In contrast,
Bayesian software has advanced remarkably, o�ering several powerful tools that this book
explores. There has never been a better time to embrace Bayesian methods in meta-analysis.

This book reflects years of thoughtful experience, and should be of huge value to anyone
faced with pooling studies into a coherent whole.

Professor Sir David Spiegelhalter, FRS OBE

xiii



Preface

Meta-analysis is a statistical tool to combine the results reported by a collection of similar
studies. The aim is to bring clarity to decision-makers (including the public), instead of
expecting them to find and reconcile multiple studies. Peter Morgan, then scientific editor
of the Canadian Medical Association, put it like this in 1986:

The medical literature can be compared to a jungle. It is fast growing, full of
dead wood, sprinkled with hidden treasure and infested with spiders and snakes.

[...]
Review articles will become increasingly popular as the size of the jungle of

medical literature doubles every 10 years. The number of review journals and books
continues to increase as more authors learn how to use the computer to search the
literature. Writing review articles will be more competitive, but it also will be more
rewarding [...] [171]

This book aims to help you continue that trend toward making sense of the literature jungle,
and to use computer power e�ectively for this.

Unfortunately, the studies that have been done on a particular topic (which we call the
evidence base) are not always very similar, and not always very well done and/or reported.
Little problems crop up that prevent us from comparing like with like, because they cannot
be accommodated in the usual meta-analysis methods.

The researcher then has a di�cult choice of whether to make some bold assumption to
simplify the problem, or to discard potentially useful studies, just to keep the meta-analysis
show on the road. This book introduces a third option: to use Bayesian methods instead,
which can include many di�cult features in the evidence base in a more tailored statistical
model, and allow useful ways of presenting results.

We have written this book for the majority of people doing meta-analysis today: re-
searchers who understand systematic reviews, and perhaps simple descriptive and inferen-
tial statistics, and who now need to combine statistics from other people’s studies. The
book is subtitled “A Practical Introduction”, a task we take very seriously. We provide not
just formulas, but code and examples, to get you started, and advice on how meta-analysis
can get tricky when the theory meets a real evidence base. We are opinionated, but we tell
you what the opposing views are, too.

We expect that most readers will be new to Bayesian methods, and so we present multiple
software options, especially in Part 1 of the book. The purpose of this is to let the reader
compare them and decide which they would prefer to use.

Our examples are mostly drawn from biomedical research, as that is our background
and the subject of most meta-analysis today, but we also reflect on research and policy in
economics and education, where meta-analysis is growing rapidly in popularity. We have
tried to keep all case studies simple so that experience of the substantive topic is not
required. As this book is both practical and an introduction, we do not devote any space to
history and very little to the philosophy of probability; these are interesting subjects, but
belong elsewhere.

xvii
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We mostly consider meta-analysis of studies that compare “arms” or groups, principally
randomised experimental studies, but there is some consideration given to studies that
cannot count on random allocation. Meta-analysis of diagnostic or prognostic models is an
important topic, but requires more space than we can accommodate here. We also do not
attempt to include borrowing of external information in clinical trials, or adaptive trial
designs. Research designs other than trials that lie outside our scope include pharmaco-
kinetic and pharmaco-dynamic research, Bayesian belief networks, hidden Markov models,
and di�erential equation methods such as in infectious disease modelling.

Part 1 of this book contains a primer on the foundations of statistical inference (Chapter
1). Readers already familiar with statistics and meta-analysis should skim, but not skip,
this chapter, because it introduces our terminology and notation, as well as a way of con-
ceptualising analyses not found in introductory statistics textbooks. Bayesian statistics and
software is introduced in Chapter 2. We then introduce meta-analysis, including Bayesian
equivalents to common e�ect models, in Chapter 3 (often called “fixed e�ect”), and random
e�ects models in Chapter 4.

Part 2 considers the inputs that are essential for Bayesian meta-analysis—extracting
statistics from published studies, and obtaining prior distributions, including the opinions
of experts—as well as how to present outputs. Part 3 explores specific problems and how
they can be modelled. Each Part 3 chapter is as short and specific as possible so that once
readers have covered the basics they can use this as a practical reference guide.

Throughout, we aim to start each chapter with a motivating problem, consider simple
models of the data-generating process, and show the readers enough code that they can
explore the problems and get a deeper intuition. At this stage, we keep the terminology
basic and the language intuitive and informal. Once the problem is understood, we propose
more complicated models to deal with it. Formal definitions, if needed at all, come at the
end when the reader has reached the deepest understanding�.

We introduce seven software options in Part 1: BUGS, JAGS, Stan, Stata, bayesmeta,
brms, and JASP. BUGS is still the most widely used software for Bayesian meta-analyses,
so we mostly present BUGS code for models in Parts 2 and 3, but the accompanying
website at https://bayesian-ma.net provides translations where possible; we use base
(not “tidyverse”) R as a lingua franca. The website includes all data and code from the
book. The computer symbol in the margin† is there to encourage readers to play with data
and models to gain deeper understanding.

We emphasise the responsibility on the meta-analyst (and any Bayesian analyst) to make
modelling choices and be prepared to explain and justify them. Readers may find themselves
on a miniature version of the famous Dunning-Kruger curve of confidence when learning and
practising statistics (see Figure 0.1). Arriving at the right-hand side of the curve requires
mathematical mastery‡, a deep understanding of why you are doing meta-analysis, and
perhaps most importantly, a critical and curious mindset.

Although our emphasis is on mastery rather than a statistical cookbook, or theorems
and proofs, we have maintained the spirit of mathematical rigour in that a term or symbol
only ever means one thing. We remember how small ambiguities in notation and coding can
leave the novice confused and dispirited. This means that our mathematical notation can
seem complicated at first, but pays dividends later.

�Michael Greenacre’s books on correspondence analysis were the inspiration for short chapters, and
Lara Alcock’s on learning mathematics informed the structure within each chapter.

†Icon produced by Linux GNOME Project, CC-BY-SA-3.0.
‡This is a concept widely discussed in primary and secondary school mathematics, but we feel it also

applies to adult professionals who are moving into unfamiliar mathematical concepts and who will need to
continually adapt what they learn to new challenges.
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FIGURE 0.1
Our take on the Dunning-Kruger curve, based on our experience as students, then teachers
of statistics. Learning Bayesian meta-analysis involves another roller-coaster ride.

Finally, we must warn readers that most people new to Bayesian methods encounter some
frustrations in the early days. To have flexibility that allows tailored models, the software
has to use simulation algorithms. Sometimes they will struggle, and it can be hard work to
track down errors in your code or to set it up in the best way to get it running smoothly.
We suspect that most new Bayesians at some point question whether it is worthwhile. We
think it is. As John Tukey wrote more than 60 years ago:

What of the future? The future of data analysis can involve great progress, the
overcoming of real di�culties, and the provision of a great service to all fields of
science and technology. Will it? That remains to us, to our willingness to take up the
rocky road of real problems in preference to the smooth road of unreal assumptions,
arbitrary criteria, and abstract results without real attachments. Who is for the
challenge? [260]

We hope you will find Bayesian meta-analysis to be as useful as we have, and join us
along the rocky road.

Robert & Gian Luca, Hampshire & Ticino, 2024
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4
Random E�ects Meta-Analysis and Heterogeneity

Learning objectives
After reading this chapter, you will be able to:

1. justify a choice of common e�ect or random e�ects models
2. interpret random e�ects meta-analysis as a form of hierarchical

(multilevel) regression model
3. choose, and justify, prior distributions on the unknown quantities

in the model
4. use Bayesian software to conduct a random e�ects meta-analysis
5. write Bayesian meta-analysis models that are close matches to the

DerSimonian-Laird and Sidik-Jonkman methods
6. critically consider the shape of heterogeneity in the evidence base,

comparing di�erent distributions, and justify your choice in a model
7. critically investigate heterogeneity and justify your choice of mod-

elling subgroups in the evidence base, or meta-regression

Each study in a meta-analysis will have collected data from a “population”. The pop-
ulation might be people with the relevant health condition in the local hospital, or on
some national register. It might not be people but instead care homes or schools, or even
individual blood samples.

We saw in Chapter 3 how studies are performed in di�erent parts of the world, at di�erent
times, and they are likely to have slightly di�erent inclusion and exclusion criteria. This
means that they are each drawing data from a somewhat di�erent population, even before
any intervention or follow-up. Then, there can be slight di�erences in how interventions are
implemented and how outcomes are defined and measured, which can alter the intervention
e�ect.

It is reasonable to expect such studies to arrive at somewhat di�erent results. This
inter-study variation, which is called heterogeneity, applies in addition to the sampling
distribution.

In the early days of meta-analysis, this was a source of much concern: that we should
not inform clinical decisions by averaging studies when we are not comparing like with like.
“Comparing apples and oranges”, people often say. The controversial psychologist Hans
Eysenck was an early sceptic of meta-analysis, and called such combinations of studies not
meta-analysis but “mega-silliness”[70].

Although we think he was wrong to condemn the majority of meta-analyses, based on
early experiences in the questionably reproducible field of personality and intelligence scales,

DOI: 10.1201/9781003375821-4 87
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we do think that he highlighted several problems that continue to trouble meta-analysts
[71]. Bayesian approaches o�er a solution to most of these.

In everyday practice, we have to consider the size of the heterogeneity, compared to the
sampling distributions. We cannot simply refuse to meta-analyse any evidence base that
exhibits even a small degree of heterogeneity, or we will be failing to help our audience. On
the other hand, we cannot put a mismatched collection of statistics into one melting pot
and expect it to be helpful.

We also have to think about what might be causing studies to arrive at heterogeneous
results. If we can understand that, we should describe it, and if we can go further and
quantify it, then we should at least consider whether we can adjust for it. This is the focus
of later chapters, but for now, we will simply set out how we can assess the size and shape
of heterogeneity and thus arrive at an estimate of the underlying e�ect and its uncertainty.

There are two approaches in widespread use to this question of how comparable the
studies are, and a third that is much rarer. We will now show how they are defined and
what the impact is on the meta-analysis.

1. Common e�ect meta-analysis works on the basis that all studies have drawn
participants at random from the same shared population. The objective is to
estimate the intervention e�ect (or other relevant statistic) in that population.
This was covered in detail in Chapter 3.

2. Random e�ects meta-analysis assumes that the studies are themselves drawn
from a population of possible studies, and then their participants’ data are in
turn drawn from a study-specific population. The random e�ects meta-analysis
allows for heterogeneity, including it as a prior distribution of the study-specific
intervention e�ects.

3. Fixed e�ects meta-analysis is rarer, and allows for di�erences between studies, but
estimates a intervention e�ect in each study’s population. The overall intervention
e�ect from the meta-analysis is then a weighted average of these, without any
claim to represent a population of potential studies.

Unfortunately, many researchers that we have met have some misunderstandings about
what these di�erent approaches entail. Often, it is said—incorrectly—that a common e�ect
meta-analysis is appropriate when there is little or no heterogeneity, and a random e�ects
should be used instead when heterogeneity is present. Worse yet, you might encounter
the suggestion that the type of meta-analysis is chosen on the basis of some measure of
heterogeneity. A clear description of these options, along with debunking other myths, is
given by Borenstein [23].

You might feel that the notion of study designs and populations being drawn at random
from a distribution of possible studies is far-fetched. We sympathise with this intuition,
but experience has shown us that anything worth doing in statistics probably needs to be
done because the answer is far from obvious. This means that we must make assumptions
and simplifications—a model—that are not entirely realistic but are close enough to give
us useful insights. Stangl and Berry expand on this point ([243], p.6).

The names given to these options are also not consistently used. You may see common
e�ect described as “fixed e�ect (singular)” or as “equal e�ect”.

In a Bayesian context, some of these distinctions become irrelevant, because of the
flexible way in which we use probability. In particular, fixed e�ects and random e�ects
models will lead to di�erent results, but the choice between them is a philosophical one. In
practical terms, a Bayesian fixed e�ects model is simply a Bayesian random e�ects model
with a flat (or wide and uniform) heterogeneity prior distribution. For this reason, we do
not consider fixed e�ects as a distinct class of meta-analysis in this book.
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4.1 Heterogeneity in the Data-Generating Process
Meta-analysis often combines di�erent studies, done in slightly di�erent ways, in di�erent
places and times. Naturally, this causes some di�erences in the statistics that they report.
Sometimes, we can understand the reason for such a di�erence, but sometimes we can’t,
and the best we can do is to model it statistically. It is called heterogeneity, from Greek
meaning “coming from di�erent sources”.

In the previous section, we presented common-e�ect meta-analyses, which assume that
all the variance between studies can be attributed to sampling.

The alternative, called random e�ects models, include heterogeneity as an additional
variance, which has scattered the studies’ populations’ intervention e�ects (◊j) around an
underlying� intervention e�ect (◊), and then each study has sampled from their own popu-
lations to obtain their reported statistics (◊̂j).

This means that the observed variance has two components: the sampling within each
study (which the reported standard errors estimate), and the di�erences between the studies
(which we meta-analysts must estimate).

◊j ≥ N(◊, ·) , ’j

◊̂j ≥ N(◊j , ‰SE(◊̂j)) , ’j
(4.1)

There are a few aspects that you should pause to consider:

1. In every study (’j), participants were drawn from a population where the mean
intervention e�ect is ◊j .

2. The study-specific (or local) populations’ mean intervention e�ects are scattered
around an underlying (or global) intervention e�ect, ◊. We assume a normal distri-
bution for this with standard deviation · . This is the heterogeneity distribution.

3. Equivalently, we could instead represent heterogeneity as adding or subtracting
some value uj from the underlying intervention e�ect ◊. This replaces ◊j with
◊ +uj , and then uj ≥ N(0, ·). Because the ujs are centred on 0, some are positive
and others negative: some study populations have higher mean intervention e�ects
than the underlying ◊, other are lower.

4. This heterogeneity is treated as a purely random process. In other words, we are
acting as though we understand nothing about why the studies di�er.

5. The individual studies’ estimates of their populations’ mean intervention e�ects,
◊̂j , are in turn drawn from the sampling distribution around their respective ◊js.

6. The mean has a normal sampling distribution, as long as the samples are not too
small and the data not too far from normality.

7. The standard error of the mean intervention e�ect is itself an estimate—hence
the large hat on ‰SE(◊̂j)—though in the first models that follow, we ignore this.

Heterogeneity adds an inter-study variance, ·2 = V (◊j) to the intra-study variance
(standard error squared) of the sampling distribution, ‰SE(◊̂j)2 = V̂ (◊̂j). Because the two
are uncorrelated, the total variance is just the sum of the two component variances (see
Equation 1.15). In fact, this is not a practical formula because there are multiple values of

�Names for this are all tricky. Sometimes people say “global” e�ect, but that implies validity for all
people everywhere.
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‰SE(◊̂j), one for each study. In the next section, we will show how this concept translates
to a statistical model that leads to estimates and inference.

The challenge here is that di�erences between studies manifest as a sum of two variances:
if we observe some estimate of the total variance, and wish to partition this, but know neither
of the components, then we cannot proceed.

The DerSimonian-Laird method [53] tackles this in the simplest way, by providing a
formula to estimate ·2, which assumes that the standard errors reported by the studies
are correct. (That is to say, ‰SE(◊̂j) = SE(◊̂j), ’j.) Other methods have been proposed
too[24, 220], which take di�erent approaches to including the uncertainty in the standard
errors. We will create Bayesian models in this chapter that mirror the principles of the
DerSimonian-Laird and another method, the Sidik-Jonkman.

If ·2 is large, then a more complex model that accounts for heterogeneity is required.
This typically means a random e�ects meta-analysis. Various measures have been proposed
to assess the size of ·2 relative to the total variance. The most common are a chi-squared
statistic called Cochran’s Q, with accompanying hypothesis test, and Higgins’ I2, which
estimates the percentage of total variance arising from heterogeneity.

A common misunderstanding is that one should fit either common e�ect or random
e�ects, depending on which fits the data best. In fact, the decision should be based on
information outside the statistics, about the study populations, interventions, controls and
outcomes, and other aspects of study design. Some people contend that heterogeneity should
always be included, as studies are not (usually) intended as direct replications of one another,
and always have some di�erences.

You should also be wary of over-optimism about what can be learnt from heterogeneity.
Popular ideas such as “personalised medicine”, in the Bayesian context, draw on the idea
that we can make inferences about individual narrow zones of the posterior distribution
pertaining to particular patients. The combined intervention e�ect ◊ is informed by all
studies in your evidence base, but to make inferences in the tails of the heterogeneity
distribution will draw on perhaps only one study, and also have relatively few posterior
draws to inform it [28].

4.1.1 DGP for continuous outcomes
We will now amend the data-generating process (DGP) for continuous outcomes, seen for
common e�ects meta-analysis in Section 3.5.1. We will consider only the di�erence between
arms, the mean di�erence, and in Chapter 8, we look into the possibility of extending this
to the individual arms.

As before, participants (i) are randomly drawn from normally distributed populations,
but now, the studies (j) do not all draw from the same population. We simplify this by
assuming that the studies are themselves drawn from a distribution (of potential studies
that might be done). Further, we assume that studies draw from populations with di�erent
means, but all have one common population standard deviation, ‡. There are only two
arms: the intervention (k = Int) and the control (k = Ctl).

Input parameters: µ, ◊, ‡, · (4.2)
Data generation:

◊j ≥ N(◊, ·) (4.3)
µjCtl = µ (4.4)
µjInt = µ + ◊j (4.5)
yijk ≥ N(µjk, ‡) , ’(i, j, k) (4.6)

Taking each line in turn, we can relate them to what we have already covered so far.
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FIGURE 4.1
A continuous outcome data-generating process with heterogeneity. Each study has an ob-
served mean drawn from the relevant normal distribution on the left. We assume the stan-
dard errors are perfectly known.

Equation 4.2: there are four parameters, whose values are not known to us, but we
will estimate them and the uncertainty around our estimates: the mean outcome in control
groups, which we assume is shared by all studies (µ), the population di�erence between
intervention and control arms (◊), the common population standard deviation (‡), and the
inter-study standard deviation of heterogeneity (·).

Equation 4.3: each study has its own population (we will call it study-specific) interven-
tion e�ect, ◊j . This can also be written as:

uj ≥ N(0, ·)
◊j = ◊ + uj

) ◊j ≥ N(◊, ·)
◊j = µjInt ≠ µjCtl

This is the di�erence between the arm-specific means (µjInt and µjCtl). As a linear
combination of two normally distributed variables, we can use Equation 1.15 to find its
distribution. Here, the heterogeneity distribution is derived; can you see why its standard
deviation, · , is the same as the standard deviation of the ujs?
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Note that the heterogeneity models the scatter of studies’ ◊js, not the µjks; that is to
say, heterogeneity a�ects the intervention e�ect (di�erence between arm means), not the
arm means themselves.

Equation 4.4: the study populations for all control arms (k = 2) have means equal to µ.
Equation 4.5: the study populations in the green tea arms (k = 1) have means equal to

µ + ◊j , so each study will di�er somewhat.
Equation 4.6: the individual data in each study and arm come from a normally dis-

tributed population with the relevant arm-specific mean and common standard deviation
‡.

Now, we can easily simulate data from this, if we input the four parameters, along with
nj1 and nj2. For example, simulating one study in R:

mu <- 0
theta <- (-1)
sigma <- 2
tau <- 0.5

n_1Int <- 100
n_1Ctl <- 120

# heterogeneity:
theta_1 <- rnorm(1, theta, tau)

# arm-specific population means:
mu_1Int <- mu + theta_1
mu_1Ctl <- mu

# data:
y_1Int <- rnorm(n_1Int, mu_1Int, sigma)
y_1Ctl <- rnorm(n_1Ctl, mu_1Ctl, sigma)

# summary stats:
mean(y_1Int)
sd(y_1Int)
mean(y_1Ctl)
sd(y_1Ctl)
t.test(y_1Int, y_1Ctl)

On the website, we provide scripts that repeatedly do this simulation (for several stud-
ies), and then run a DerSimonian-Laird meta-analysis on the resulting statistics. This allows
you to see that DerSimonian-Laird works well if the assumptions are met.

Let’s consider next the statistics that each study will provide, to complete our journey
back to meta-analysis. Equations 4.7 to 4.10 present the same ideas of sampling that we
have already covered.

The observed mean in any arm is drawn from a sampling distribution around the true
arm-specific mean:

ȳjk ≥ N
3

µjk,
‡

Ô
njk

4
, ’(j, k) (4.7)
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The variances of each arm’s mean can be added together because, as a randomised study,
they are uncorrelated. Each study’s estimate of the intervention e�ect is the di�erence
between the observed arm-specific means:

◊̂j = ȳj1 ≠ ȳj2 (4.8)

Each study’s estimate of the intervention e�ect is distributed about the study-specific
mean intervention e�ect ◊j by a sampling distribution:

◊̂j ≥ N
A

◊j ,

Û
‡2

nj1
+ ‡2

nj2

B
(4.9)

This is not very useful, because we have no idea what the values of ◊j are, so in Equation
4.10, we link this back further to ◊, combining the heterogeneity and sampling distributions
(because they too are uncorrelated):

) ◊̂j ≥ N
A

◊,

Û
‡2

nj1
+ ‡2

nj2
+ ·2

B

◊̂j ≥ N
1

◊, ‰SE(◊̂j)
2 (4.10)

We can write Equation 4.10 in a di�erent way, by introducing uj , which can be positive
or negative with mean 0:

uj ≥ N(0, ·)

◊̂j ≥ N(◊ + uj , „SE(◊̂j))
(4.11)

In BUGS, it will look something like this:

u[j] � dnorm(0, tau_precision)
theta[j] <- theta + u[j]
theta_hat[j] � dnorm(theta[j], se_precision[j])

We can easily simulate some study statistics that will look like these, and play with some
di�erent values of · , to get a closer understanding of the model. On the website, we provide
code where you supply · and obtain a forest plot representing simulated study results. This
will help you to acquire an instinctive recognition of what di�erent levels of heterogeneity
look like, and when the various statistics might be misleading.

This brings us full circle to Equation 4.1. We have started from the data-generating
process for individual participant data and seen how this leads to the heterogeneity variance
and the sampling error. This two-level scattering is captured in a random e�ects meta-
analysis. It is also an example of what statisticians call a hierarchical or multilevel model.
Hierarchical models are very widely used, for example in cluster-randomised clinical trials,
or data from electronic health records, where patients attend one of a range of local health
care providers, and we would expect the patients at one location to be somehow di�erent
to those at another location.

Now, consider the likelihood methods in Section 2.1, and how they could be applied
here—just at an informal level of detail. If we have been given ◊̂j and sj• or something
else that allows you to calculate ‰SE(◊̂j), can you apply the equations above to evaluate the
likelihood for various values of ◊ and ‡? How might you also estimate ·? Do you need µ for
this?
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You might feel that this DGP approach is excessively complex for a meta-analysis, espe-
cially as we explained that non-Bayesian methods are elaborations on a weighted average.
We have spelt out much more detail than you will need in order to perform a meta-analysis
so that all the connections between participant data, population parameters and study
statistics are clear at this early stage.

The DGP approach has two important benefits. We have to be explicit about all our
assumptions, and can no longer hide behind black box analyses. This helps us to question
the evidence base and to be prepared to justify all our modelling choices. Also, when we
move to Bayesian analyses, we have the framework ready. We can easily adapt the DGP,
for example, to allow for non-normal heterogeneity.

4.2 Bayesian Models and Priors
Like we did for common e�ect meta-analysis in Section 3.6, we will now show the corre-
sponding models, and later the code, to implement a simple random e�ects meta-analysis.
We will use a variety of priors here and in the code that follows, to illustrate options; they
are not recommended in general.

4.2.1 Priors
To fit a Bayesian meta-analysis to our data, we need to supply prior distributions for the
unknown parameters of the model: f(◊), f(·), f(uj) in the case of the model in Equa-
tion 4.11. Noting the various approaches to prior distributions in Chapter 2, we will use
weakly informative priors in this section, to focus attention on the construction of the model.

In experimental studies, it is typical to appeal to equipoise when designing the recruit-
ment and seeking ethical approval. On this basis, a meta-analysis of these experimental
studies (such as randomised controlled trials (RCTs)), with weakly informative or di�use
f(◊), can reasonably use priors with a median of 0: there is equal probability of the inter-
vention e�ect being on either side.

We have been dealing with mean di�erences so far, and these can take both negative and
positive values, so f(◊) should be defined for all real numbers from ◊ = ≠Œ to ◊ = +Œ.

The normal distribution is the usual starting point. t and Cauchy distributions allow
higher probability of being further from the mean—and in so doing, allow the computer to
get into potentially troublesome territory, where posterior densities are extremely low and
it takes a very long time to return to the high density region.

Remember that there is no safe “default” prior that can be applied to all instances of a
certain statistic. Prior predictive checking, as described in Chapter 2, will help you detect
mis-matches between your priors and your evidence base.

As with any standard deviation, · can only take positive values, so its priors should do
so too. It has been common practice for many years to use inverse-gamma distributions for
variances (see Section 2.2.3.2), though this has been criticised in recent years in favour of
normal, Cauchy or t-distributions, truncated to only the part above zero[85]. These are often
called “half-normal”, “half-Cauchy”, and so on. We will write them like this: · ≥ N+(0, 2).
Examples appear in the software-specific sections below. Several alternatives have been
suggested in the past[247].

Some people use uniform priors for standard deviations or precisions, as there is usually
no prior information or opinion to shape them other than ruling out completely unbelievable
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values. However, there is a risk in providing a flat region in the priors or likelihood for
some sampling algorithms, and until you are a confident Bayesian modeller, we recommend
something like a half-normal so that there is always a gradient† to guide the sampling
algorithm back from extreme values.

The prior for each of the uj parameters is the same, and is the heterogeneity distribution.
If you make this normal, with standard deviation · , then that is the prior: uj ≥ N(0, ·).

Note that uj has a prior, the standard deviation of which (·) has its own prior! Some
people use the term “hyperprior” in this setting, but we prefer not to single it out as
acting in any di�erent way to other probabilistic statements in our model (also to avoid
the need for hyperhyperpriors further down the line). It simply reflects the probability of
finding di�erent values of · . It also functions to pool information (people often say “borrow
information”) across all the studies, because they all tell us something about · .

4.2.2 Empirical priors to update a previous meta-analysis
The main unknown that you will seek to estimate is likely something that serves as an
intervention e�ect between two arms. For this, whether it is a mean di�erence, a log odds
ratio, or log rate ratio, the prior and posterior are going to be approximately normal. Take
the green tea meta-analysis as an example (“Analysis 1.4”, p.61 [136]). They reported a
mean di�erence of ≠0.47 units of body mass index (kg/m2), favouring green tea, and a 95%
confidence interval from ≠0.77 to ≠0.17. Bearing in mind that the normal 95% confidence
interval extends 1.96 standard errors on either side of the mean, that implies that the
standard error was 0.3/1.96 = 0.15. So we can set a prior as N(≠0.47, 0.15), and update it
with just the latest studies.

There are some complications to this though. Firstly, our model should be comparable to
the one that we are adopting from the previous meta-analysis. If we include heterogeneity,
so should they. Inclusion / exclusion criteria should be the same for studies too, and if there
is a marked change in the population or study designs and conduct between the old and
new studies, then we should not take the old results as a prior for the new.

Secondly, there are other unknowns, notably the heterogeneity standard deviation. We
should choose whether to impose a prior on those that is also based on previous results [264],
or some kind of di�use or weakly informative prior. If the posterior is correlated between
our intervention e�ect and some of these other unknowns, then we will perhaps bias our
results somewhat by having a more di�use prior on the other unknown, and allowing it to
accommodate less likely values.

This problematic correlation should not occur for simple meta-analyses, but there is no
guarantee of that for more complicated models, such as we will construct in Part 3 of this
book. In those models, a better idea would be to adopt the study statistics from the old
evidence base and include them in your meta-analysis, e�ectively analysing all the data
together from scratch. Unfortunately, as we will see, this can extend well beyond the usual
djk and njk, or njk, ȳjk, and sjk, and so it could be a lot of work to extract the additional
statistics needed for a complicated model.

In summary, although these empirical priors using previous results sound like a good
idea, mainly as a labour-saving device, they are not always easy to apply in a way that we
can be comfortable will not inadvertently distort the analysis.

†. . . in theory at least; digital rounding error means that there may be de facto flat regions of parameter
space when the proposed parameter values have either a very small prior density or very low likelihood.
Sensible initial values will help us avoid them.
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